Strong convergence of discrete DG solutions of the heat equation

نویسندگان

  • Vivette Girault
  • Jizhou Li
  • Béatrice Rivière
چکیده

A convergence analysis to the weak solution is derived for interior penalty discontinuous Galerkin methods applied to the heat equation in two and three dimensions under general mixed boundary conditions. Strong convergence is established in the DG norm, as well as in the L norm, in space and in the L norm in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Symmetric Interior Penalty Discontinuous Galerkin Methods for the Allen-cahn Equation and the Mean Curvature Flow

This paper develops and analyzes two fully discrete interior penalty discontinuous Galerkin (IP-DG) methods for the Allen-Cahn equation, which is a nonlinear singular perturbation of the heat equation and originally arises from phase transition of binary alloys in materials science, and its sharp interface limit (the mean curvature flow) as the perturbation parameter tends to zero. Both fully i...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Non-homogeneous continuous and discrete gradient systems‎: ‎the quasi-convex case

‎In this paper‎, ‎first we study the weak and strong convergence of solutions to the‎ ‎following first order nonhomogeneous gradient system‎ ‎$$begin{cases}-x'(t)=nablaphi(x(t))+f(t), text{a.e. on} (0,infty)\‎‎x(0)=x_0in Hend{cases}$$ to a critical point of $phi$‎, ‎where‎ ‎$phi$ is a $C^1$ quasi-convex function on a real Hilbert space‎ ‎$H$ with ${rm Argmin}phineqvarnothing$ and $fin L^1(0...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

Positive solutions for discrete fractional initial value problem

‎‎In this paper‎, ‎the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement‎ .‎The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2016